Chapitre V.
L’Analyse et la Physique.
I
On vous a sans doute souvent demandé à quoi servent les mathématiques et si ces délicates constructions que nous tirons tout entières de notre esprit ne sont pas artificielles et enfantées par notre caprice.
Parmi les personnes qui font cette question, je dois faire une distinction ; les gens pratiques réclament seulement de nous le moyen de gagner de l’argent. Ceux-là ne méritent pas qu’on leur réponde ; c’est à eux plutôt qu’il conviendrait de demander à quoi bon accumuler tant de richesses et si, pour avoir le temps de les acquérir, il faut négliger l’art et la science qui seuls nous font des âmes capables d’en jouir,
et propter vitam vivendi perdere causas.
D’ailleurs, une science uniquement faite en vue des applications est impossible ; les vérités ne sont fécondes que si elles sont enchaînées les unes aux autres. Si l’on s’attache seulement à celles dont on attend un résultat immédiat, les anneaux intermédiaires manqueront, et il n’y aura plus de chaîne.
Les hommes les plus dédaigneux de la théorie y trouvent sans s’en douter un aliment quotidien ; si l’on était privé de cet aliment, le progrès s’arrêterait rapidement et nous nous figerions bientôt dans l’immobilité de la Chine.
Mais c’est assez nous occuper des praticiens intransigeants. À côté d’eux, il y a ceux qui sont seulement curieux de la nature et qui nous demandent si nous sommes en état de la leur mieux faire connaître.
Pour leur répondre, nous n’avons qu’à leur montrer les deux monuments déjà ébauchés de la Mécanique Céleste et de la Physique Mathématique.
Ils nous concéderaient sans doute que ces monuments valent bien la peine qu’ils nous ont coûtée. Mais ce n’est pas assez.
Les mathématiques ont un triple but. Elles doivent fournir un instrument pour l’étude de la nature.
Mais ce n’est pas tout : elles ont un but philosophique et, j’ose le dire, un but esthétique. Elles doivent aider le philosophe à approfondir les notions de nombre, d’espace, de temps.
Et surtout leurs adeptes y trouvent des jouissances analogues à celles que donnent la peinture et la musique. Ils admirent la délicate harmonie des nombres et des formes ; ils s’émerveillent quand une découverte nouvelle leur ouvre une perspective inattendue ; et la joie qu’ils éprouvent ainsi n’a-t-elle pas le caractère esthétique, bien que les sens n’y prennent aucune part ? Peu de privilégiés sont appelés à la goûter pleinement, cela est vrai, mais n’est-ce pas ce qui arrive pour les arts les plus nobles ?
C’est pourquoi je n’hésite pas à dire que les mathématiques méritent d’être cultivées pour elles-mêmes et que les théories qui ne peuvent être appliquées à la physique doivent l’être comme les autres.
Quand même le but physique et le but esthétique ne seraient pas solidaires, nous ne devrions sacrifier ni l’un ni l’autre.
Mais il y a plus : ces deux buts sont inséparables et le meilleur moyen d’atteindre l’un c’est de viser l’autre, ou du moins de ne jamais le perdre de vue. C’est ce que je vais m’efforcer de démontrer en précisant la nature des rapports entre la science pure et ses applications.
Le mathématicien ne doit pas être pour le physicien un simple fournisseur de formules ; il faut qu’il y ait entre eux une collaboration plus intime. La physique mathématique et l’analyse pure ne sont pas seulement des puissances limitrophes, entretenant des rapports de bon voisinage ; elles se pénètrent mutuellement et leur esprit est le même.
C’est ce que l’on comprendra mieux quand j’aurai montré ce que la physique reçoit de la mathématique et ce que la mathématique, en retour, emprunte à la physique.
II
Le physicien ne peut demander à l’analyste de lui révéler une vérité nouvelle ; tout au plus celui-ci pourrait-il l’aider à la pressentir.
Il y a longtemps que personne ne songe plus à devancer l’expérience, ou à construire le monde de toutes pièces sur quelques hypothèses hâtives. De toutes ces constructions où l’on se complaisait encore naïvement il y a un siècle, il ne reste plus aujourd’hui que des ruines.
Toutes les lois sont donc tirées de l’expérience ; mais pour les énoncer, il faut une langue spéciale ; le langage ordinaire est trop pauvre, il est d’ailleurs trop vague, pour exprimer des rapports si délicats, si riches et si précis.
Voilà donc une première raison pour laquelle le physicien ne peut se passer des mathématiques ; elles lui fournissent la seule langue qu’il puisse parler.
Et ce n’est pas une chose indifférente qu’une langue bien faite ; pour ne pas sortir de la physique, l’homme inconnu qui a inventé le mot chaleur a voué bien des générations à l’erreur. On a traité la chaleur comme une substance, simplement parce qu’elle était désignée par un substantif, et on l’a crue indestructible.
En revanche, celui qui a inventé le mot électricité a eu le bonheur immérité de doter implicitement la physique d’une loi nouvelle, celle de la conservation de l’électricité, qui, par un pur hasard, s’est trouvée exacte, du moins jusqu’à présent.
Eh bien, pour poursuivre la comparaison, les écrivains qui embellissent une langue, qui la traitent comme un objet d’art, en font en même temps un instrument plus souple, plus apte à rendre les nuances de la pensée.
On comprend alors comment l’analyste, qui poursuit un but purement esthétique, contribue par cela même à créer une langue plus propre à satisfaire le physicien.
Mais ce n’est pas tout ; la loi sort de l’expérience, mais elle n’en sort pas immédiatement. L’expérience est individuelle, la loi qu’on en tire est générale, l’expérience n’est qu’approchée, la loi est précise ou du moins prétend l’être. L’expérience se fait dans des conditions toujours complexes, l’énoncé de la loi élimine ces complications. C’est ce qu’on appelle « corriger les erreurs systématiques ».
En un mot, pour tirer la loi de l’expérience, il faut généraliser ; c’est une nécessité qui s’impose à l’observateur le plus circonspect.
Mais comment généraliser ? Toute vérité particulière peut évidemment être étendue d’une infinité de manières. Entre ces mille chemins qui s’ouvrent devant nous, il faut faire un choix, au moins provisoire ; dans ce choix, qui nous guidera ?
Ce ne pourra être que l’analogie. Mais que ce mot est vague ! L’homme primitif ne connaît que les analogies grossières, celles qui frappent les sens, celles des couleurs ou des sons. Ce n’est pas lui qui aurait songé à rapprocher par exemple la lumière de la chaleur rayonnante.
Qui nous a appris à connaître les analogies véritables, profondes, celles que les yeux ne voient pas et que la raison devine ?
C’est l’esprit mathématique, qui dédaigne la matière pour ne s’attacher qu’à la forme pure. C’est lui qui nous a enseigné à nommer du même nom des êtres qui ne diffèrent que par la matière, à nommer du même nom par exemple la multiplication des quaternions et celle des nombres entiers.
Si les quaternions, dont je viens de parler, n’avaient été si promptement utilisés par les physiciens anglais, bien des personnes n’y verraient sans doute qu’une rêverie oiseuse, et pourtant, en nous apprenant à rapprocher ce que les apparences séparent, ils nous auraient déjà rendus plus aptes à pénétrer les secrets de la nature.
Voilà les services que le physicien doit attendre de l’analyse, mais pour que cette science puisse les lui rendre, il faut qu’elle soit cultivée de la façon la plus large, sans préoccupation immédiate d’utilité, il faut que le mathématicien ait travaillé en artiste.
Ce que nous lui demandons c’est de nous aider à voir, à discerner notre chemin dans le dédale qui s’offre à nous. Or, celui qui voit le mieux, c’est celui qui s’est élevé le plus haut.
Les exemples abondent, et je me bornerai aux plus frappants.
Le premier nous montrera comment il suffit de changer de langage pour apercevoir des généralisations qu’on n’avait pas d’abord soupçonnées.
Quand la loi de Newton s’est substituée à celle de Kepler, on ne connaissait encore que le mouvement elliptique. Or, en ce qui concerne ce mouvement, les deux lois ne diffèrent que par la forme ; on passe de l’une à l’autre par une simple différenciation.
Et cependant, de la loi de Newton, on peut déduire, par une généralisation immédiate, tous les effets des perturbations et toute la mécanique céleste. Jamais au contraire, si l’on avait conservé l’énoncé de Kepler, on n’aurait regardé les orbites des planètes troublées, ces courbes compliquées dont personne n’a jamais écrit l’équation, comme les généralisations naturelles de l’ellipse. Les progrès des observations n’auraient servi qu’à faire croire au chaos.
Le second exemple mérite également d’être médité.
Quand Maxwell a commencé ses travaux, les lois de l’électro-dynamique admises jusqu’à lui rendaient compte de tous les faits connus. Ce n’est pas une expérience nouvelle qui est venue les infirmer.
Mais en les envisageant sous un biais nouveau, Maxwell a reconnu que les équations deviennent plus symétriques quand on y ajoute un terme, et d’autre part ce terme était trop petit pour produire des effets appréciables avec les méthodes anciennes.
On sait que les vues a priori de Maxwell ont attendu vingt ans une confirmation expérimentale ; ou si vous aimez mieux, Maxwell a devancé de vingt ans l’expérience.
Comment ce triomphe a-t-il été obtenu ?
C’est que Maxwell était profondément imprégné du sentiment de la symétrie mathématique ; en aurait-il été de même, si d’autres n’avaient avant lui recherché cette symétrie pour sa beauté propre ?
C’est que Maxwell était habitué à « penser en vecteurs » et pourtant si les vecteurs se sont introduits dans l’analyse, c’est par la théorie des imaginaires. Et ceux qui ont inventé les imaginaires ne se doutaient guère du parti qu’on en tirerait pour l’étude du monde réel ; le nom qu’ils leur ont donné le prouve▶ suffisamment.
Maxwell en un mot n’était peut-être pas un habile analyste, mais cette habileté n’aurait été pour lui qu’un bagage inutile et gênant. Au contraire il avait au plus haut degré le sens intime des analogies mathématiques. C’est pour cela qu’il a fait de bonne physique mathématique.
L’exemple de Maxwell nous apprend encore autre chose.
Comment faut-il traiter les équations de la physique mathématique ? Devons-nous simplement en déduire toutes les conséquences, et les regarder comme des réalités intangibles ? Loin de là ; ce qu’elles doivent nous apprendre surtout, c’est ce qu’on peut et ce qu’on doit y changer. C’est comme cela que nous en tirerons quelque chose d’utile.
Le troisième exemple va nous montrer comment nous pouvons apercevoir des analogies mathématiques entre des phénomènes qui n’ont physiquement aucun rapport ni apparent, ni réel, de telle sorte que les lois de l’un de ces phénomènes nous aident à deviner celles de l’autre.
Une même équation, celle de Laplace, se rencontre dans la théorie de l’attraction newtonienne, dans celle du mouvement des liquides, dans celle du potentiel électrique, dans celle du magnétisme, dans celle de la propagation de la chaleur et dans bien d’autres encore.
Qu’en résulte-t-il ? Ces théories semblent des images calquées l’une sur l’autre ; elles s’éclairent mutuellement, en s’empruntant leur langage ; demandez aux électriciens s’ils ne se félicitent pas d’avoir inventé le mot de flux de force, suggéré par l’hydrodynamique et la théorie de la chaleur.
Ainsi les analogies mathématiques, non seulement peuvent nous faire pressentir les analogies physiques, mais encore ne cessent pas d’être utiles, quand ces dernières font défaut.
En résumé le but de la physique mathématique n’est pas seulement de faciliter au physicien le calcul numérique de certaines constantes ou l’intégration de certaines équations différentielles.
Il est encore, il est surtout de lui faire connaître l’harmonie cachée des choses en les lui faisant voir d’un nouveau biais.
De toutes les parties de l’analyse, ce sont les plus élevées, ce sont les plus pures, pour ainsi dire, qui seront les plus fécondes entre les mains de ceux qui savent s’en servir.
III
Voyons maintenant ce que l’analyse doit à la physique.
Il faudrait avoir complètement oublié l’histoire de la science pour ne pas se rappeler que le désir de connaître la nature a eu sur le développement des mathématiques l’influence la plus constante et la plus heureuse.
En premier lieu, le physicien nous pose des problèmes dont il attend de nous la solution. Mais en nous les proposant, il nous a payé largement d’avance le service que nous pourrons lui rendre, si nous parvenons à les résoudre.
Si l’on veut me permettre de poursuivre ma comparaison avec les beaux-arts, le mathématicien pur qui oublierait l’existence du monde extérieur, serait semblable à un peintre qui saurait harmonieusement combiner les couleurs et les formes, mais à qui les modèles feraient défaut. Sa puissance créatrice serait bientôt tarie.
Les combinaisons que peuvent former les nombres et les symboles sont une multitude infinie. Dans cette multitude, comment choisirons-nous celles qui sont dignes de retenir notre attention ? Nous laisserons-nous uniquement guider par notre caprice ? Ce caprice, qui lui-même d’ailleurs ne tarderait pas à se lasser, nous entraînerait sans doute bien loin les uns des autres et nous cesserions promptement de nous entendre entre nous.
Mais ce n’est là que le petit côté de la question.
La physique nous empêchera sans doute de nous égarer, mais elle nous préservera aussi d’un danger bien plus redoutable ; elle nous empêchera de tourner sans cesse dans le même cercle.
L’histoire le ◀prouve, la physique ne nous a pas seulement forcés de choisir entre les problèmes qui se présentaient en foule ; elle nous en a imposé auxquels nous n’aurions jamais songé sans elle.
Quelque variée que soit l’imagination de l’homme, la nature est mille fois plus riche encore. Pour la suivre, nous devons prendre des chemins que nous avions négligés et ces chemins nous conduisent souvent à des sommets d’où nous découvrons des paysages nouveaux. Quoi de plus utile !
Il en est des symboles mathématiques comme des réalités physiques ; c’est en comparant les aspects différents des choses que nous pourrons en comprendre l’harmonie intime, qui seule est belle et par conséquent digne de nos efforts.
Le premier exemple que je citerai est tellement ancien qu’on serait tenté de l’oublier ; il n’en est pas moins le plus important de tous.
Le seul objet naturel de la pensée mathématique, c’est le nombre entier. C’est le monde extérieur qui nous a imposé le continu, que nous avons inventé sans doute, mais qu’il nous a forcés à inventer.
Sans lui il n’y aurait pas d’analyse infinitésimale ; toute la science mathématique se réduirait à l’arithmétique ou à la théorie des substitutions.
Au contraire, nous avons consacré à l’étude du continu presque tout notre temps et toutes nos forces. Qui le regrettera ; qui croira que ce temps et ces forces ont été perdus ?
L’analyse nous déroule des perspectives infinies que l’arithmétique ne soupçonne pas ; elle vous montre d’un coup d’œil un ensemble grandiose, dont l’ordonnance est simple et symétrique ; au contraire, dans la théorie des nombres, où règne l’imprévu, la vue est pour ainsi dire arrêtée à chaque pas.
Sans doute on vous dira qu’en dehors du nombre entier, il n’y a pas de rigueur, et par conséquent pas de vérité mathématique ; que partout il se cache, et qu’il faut s’efforcer de rendre transparents les voiles qui le dissimulent, dût-on pour cela se résigner à d’interminables redites.
Ne soyons pas si puristes et soyons reconnaissants au continu qui, si tout sort du nombre entier, était seul capable d’en faire tant sortir.
Ai-je besoin d’ailleurs de rappeler que M. Hermite a tiré un parti surprenant de l’introduction des variables continues dans la théorie des nombres ? Ainsi le domaine propre du nombre entier est envahi lui-même, et cette invasion a établi l’ordre, là où régnait le désordre.
Voilà ce que nous devons au continu et par conséquent à la nature physique.
La série de Fourier est un instrument précieux dont l’analyse fait un usage continuel, c’est par ce moyen qu’elle a pu représenter des fonctions discontinues ; si Fourier l’a inventée, c’est pour résoudre un problème de physique relatif à la propagation de la chaleur. Si ce problème ne s’était posé naturellement, on n’aurait jamais osé rendre au discontinu ses droits ; on aurait longtemps encore regardé les fonctions continues comme les seules fonctions véritables.
La notion de fonction s’est par là considérablement étendue et a reçu de quelques analystes logiciens un développement imprévu. Ces analystes se sont ainsi aventurés dans des régions où règne l’abstraction la plus pure et se sont éloignés autant qu’il est possible du monde réel. C’est cependant un problème de physique qui leur en a fourni l’occasion.
Derrière la série de Fourrier, d’autres séries analogues sont entrées dans le domaine de l’analyse ; elles y sont entrées par la même porte ; elles ont été imaginées en vue des applications.
La théorie des équations aux dérivées partielles du second ordre a eu une histoire analogue ; elle s’est développée surtout par et pour la physique. Mais elle peut prendre bien des formes ; car une pareille équation ne suffit pas pour déterminer la fonction inconnue, il faut y adjoindre des conditions complémentaires qu’on appelle conditions aux limites ; d’où bien des problèmes différents.
Si les analystes s’étaient abandonnés à leurs tendances naturelles, ils n’en auraient jamais connu qu’un, celui qu’a traité Mme de Kowalevski dans son célèbre mémoire.
Mais il y en a une foule d’autres qu’ils auraient ignorés.
Chacune des théories physiques, celle de l’électricité, celle de la chaleur, nous présente ces équations sous un aspect nouveau. On peut donc dire que sans elles, nous ne connaîtrions pas les équations aux dérivées partielles.
Il est inutile de multiplier les exemples. J’en ai dit assez pour pouvoir conclure : quand les physiciens nous demandent la solution d’un problème, ce n’est pas une corvée qu’ils nous imposent, c’est nous au contraire qui leur devons des remercîments.
IV
Mais ce n’est pas tout ; la physique ne nous donne pas seulement l’occasion de résoudre des problèmes ; elle nous aide à en trouver les moyens, et cela de deux manières.
Elle nous fait pressentir la solution ; elle nous suggère des raisonnements.
J’ai parlé plus haut de l’équation de Laplace que l’on rencontre dans une foule de théories physiques fort éloignées les unes des autres. On la retrouve en géométrie, dans la théorie de la représentation conforme et en analyse pure, dans celle des imaginaires.
De cette façon, dans l’étude des fonctions de variables complexes, l’analyste, à côté de l’image géométrique, qui est son instrument habituel, trouve plusieurs images physiques dont il peut faire usage avec le même succès.
Grâce à ces images, il peut voir d’un coup d’œil ce que la déduction pure ne lui montrerait que successivement. Il rassemble ainsi les éléments épars de la solution, et par une sorte d’intuition devine avant de pouvoir démontrer.
Deviner avant de démontrer ? Ai-je besoin de rappeler que c’est ainsi que se sont faites toutes les découvertes importantes ?
Combien de vérités que les analogies physiques nous permettent de pressentir et que nous ne sommes pas en état d’établir par un raisonnement rigoureux !
Par exemple, la physique mathématique introduit un grand nombre de développements en séries. Ces développements convergent, personne n’en doute ; mais la certitude mathématique fait défaut.
Ce sont autant de conquêtes assurées pour les chercheurs qui viendront après nous.
La physique, d’autre part, ne nous fournit pas seulement des solutions ; elle nous fournit encore, dans une certaine mesure, des raisonnements.
Il me suffira de rappeler comment M. Klein, dans une question relative aux surfaces de Riemann, a eu recours aux propriétés des courants électriques.
Il est vrai que les raisonnements de ce genre ne sont pas rigoureux, au sens que l’analyste attache à ce mot.
Et, à ce propos, une question se pose : comment une démonstration, qui n’est pas assez rigoureuse pour l’analyste, peut-elle suffire au physicien ? Il semble qu’il ne peut y avoir deux rigueurs, que la rigueur est ou n’est pas, et que, là où elle n’est pas, il ne peut y avoir de raisonnement. On comprendra mieux ce paradoxe apparent, en se rappelant dans quelles conditions le nombre s’applique aux phénomènes naturels.
D’où proviennent en général les difficultés que l’on rencontre quand on recherche la rigueur ? On s’y heurte presque toujours en voulant établir que telle quantité tend vers telle limite, ou que telle fonction est continue, ou qu’elle a une dérivée.
Or les nombres que le physicien mesure par l’expérience ne lui sont jamais connus qu’approximativement ; et, d’autre part, une fonction quelconque diffère toujours aussi peu que l’on veut d’une fonction discontinue, et en même temps elle diffère aussi peu que l’on veut d’une fonction continue.
Le physicien peut donc supposer à son gré, que la fonction étudiée est continue, ou qu’elle est discontinue ; qu’elle a une dérivée, ou qu’elle n’en a pas ; et cela sans crainte d’être jamais contredit, ni par l’expérience actuelle, ni par aucune expérience future. On conçoit, qu’avec cette liberté, il se joue des difficultés qui arrêtent l’analyste.
Il peut toujours raisonner comme si toutes les fonctions qui s’introduisent dans ses calculs étaient des polynômes entiers.
Ainsi l’aperçu qui suffit à la physique n’est pas le raisonnement qu’exige l’analyse. Il ne s’en suit pas que l’un ne puisse aider à trouver l’autre.
On a déjà transformé en démonstrations rigoureuses tant d’aperçus physiques que cette transformation est aujourd’hui facile.
Les exemples abonderaient si je ne craignais, en les citant, de fatiguer l’attention du lecteur.
J’espère en avoir assez dit pour montrer que l’analyse pure et la physique mathématique peuvent se servir l’une l’autre sans se faire l’une à l’autre aucun sacrifice et que chacune de ces deux sciences doit se réjouir de tout ce qui élève son associée.